Syd Kreitzman,

June 17, 2018 ... Preliminary version
(8, 2018 ... First Revision, updated range of Nc, added WURST adiabatic programing, corrections or errors (in previous information) are highlighted in red and marked with a *

facts and Notation

I/Q per of I/Q pairs is 2048
$-\mathrm{I} / \mathrm{Q}$ pair amplitude is bipolar 10 bit $->$ amplitude programing will be scaled to $\mathrm{Fi}(\mathrm{n})=\left[511^{*} \mathrm{Fi}^{\prime}(\mathrm{n})\right]$, where Fi ' (n) ranges from ($(-1,1)$ and []$=$ nearest integer
All I / Q mod functions will have this "full scale" programing. If the amplitude of the pulse needs to vary, use the channel's output scale factor. This pr
$*-$ The current maximum_value_of_Nc $=$ Ncmax $=4095$
$*-$ the I/Q data pair is clocked out at $\left(\right.$ Nc +1) ${ }^{*} 50 \mathrm{~ns}$, where Nc ranges from $0->$ Ncmax
-the longest modulated puise available is Ncmax*2048*50ns $=419$. 328 ms

 -Each modulation function can be written as $\mathrm{Fi}(\mathrm{n})=511^{*}\left[\mathrm{~F}^{\prime} \mathrm{i}\left\{\mathrm{b}_{-} \mathrm{i}^{*}(\mathrm{t}-\mathrm{Tpc} / 2) /(\mathrm{Tpc} / 2)\right\}\right]=\left[511^{*} \mathrm{Fi} \mathrm{i}^{\prime}\left\{\mathrm{b}_{-} \mathrm{i}^{*} 2^{*}(2 \mathrm{n}-\mathrm{Niq}-1) /\left(2^{*}(\mathrm{Niq}-1)\right)\right\}\right]$; (slightly more accurate is required. This is not true for the wurstN.解 Tp is the nominal length/time of the pulse determined by the required linewidth, and Tpc is the calculated length of the pulse rounded to the next (Nc+1*50ns)
iq is the number of iq pairs (i.e. the I\&Q data Memory Length) with n ranging from 1 to Nic

Siegel et al, Sensitivity Enhancement of NMR Spectra of Half-Integer Quadrupolar Nuclei in the Solid State via Population transfer, Concepts in Mas
Siegel et al, Sensitivity Enhancement of NMR Spectra of Half-Integer Quadrupolar Nuclei in the Solid State via Population Transfer, Concepts in Magnetic Resonance Part A, Vol. 26A(2) 47âe"61 (2005)
Silver et al, Selective Spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Block-Riccati equation, Phys. Rev. A, Vol. 31 , No. 4 (1985)

 References: 0^{\prime} Dell, The WURST kind of pulses in solid-state NMR, solid State Nuclear Magnetic Resonance $55-56$ (2013) https://www.journals.elsevier.com/solid-state-nuclear-magnetic-resonance

calculation of Tp : (and other needed parameters)

Note: The calculation for $T p$ is dependent on the relationship between the needed irradiation line width Δf and the function chosen \& the fulfilling of the adiabatic sweep condition for the wurst pulse

 Calculation of Niq, $\mathrm{Nc}+1=2.005(\mathrm{k}$

* Niq $=\left[\left[T \mathrm{Tp}(\mathrm{ms}) /\left(50 \mathrm{E}-6^{*}\right.\right.\right.$ (Nc+ Na
* Tpc $(\mathrm{ms})=50 \mathrm{E}-\mathbf{6}^{*}(\mathrm{Nc}+1)^{*} \mathrm{Niq}$

i.e. Δ ffemin_csech $=.0201 \mathrm{kHz}$
$\Delta f s _$min_wurst $=.0255 \mathrm{kHz}$ (assuming f1=. 63 kHz , smaller values of f1 will permit a lower min value of $\Delta \mathrm{fs}$)
and
Δf _max_csech $=164.697 \mathrm{kHz}$

Summary
i) Select the modulation type
iv) Calculate Tp (ms) for the modulation type \& verify it is within available limits (which should be true if condition iii) or)
v) Calculate Ncti, Niq and Tpc and verify Nc+1 and Niq are within limits. Niq should be between 1024 and 2048

For complex-sech:
$\underset{\text { b_csech }}{5.2983} \mathrm{I}^{\prime} \operatorname{csech}(\mathrm{x})=\left[511^{*} \operatorname{sech}(\mathrm{x})^{*} \cos \left(\mathrm{u}^{*} \ln (\operatorname{sech}(x))\right)\right] \quad Q^{\prime} \operatorname{sech}(x)=\left[511^{*} \operatorname{sech}(x)^{*} \sin \left(u^{*} \ln (\operatorname{sech}(x))\right)\right]$, with $u=5[\ldots]=$ nearest integer
$\underset{\text { b_ghermite }}{\text { For }} \mathbf{2 . 5} \quad$ I'ghermite $(x)=\left[511^{*}\left(1-x^{\wedge} 2\right) * \exp \left(-\left(x^{\wedge} 2\right)\right)\right]$ Q'ghermite $=0$

for $\mathrm{x}=\mathrm{b} \mathrm{i}^{*} 2^{*}(2 \mathrm{n}-\mathrm{Niq}-1) /\left(2^{*}(\mathrm{Niq}-1)\right)$, where n goes from 1 to Niq

